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Syllogistic Reasoning In Fuzzy Logic
and Its Application to Reasoning with Dispositions

L. A. Zudeh*

ABSTRACT

A fuzzy syllogism in fuzzy logic is defined in this paper to be an inference
schema in which the major premise, the minor premise sad the conclusion are

propositions containing fuzzy quantifiers. A basic fuzzy sylogism in fuzzy logic is

the intereection/product syllogism

QA' ae B'

Q2(A and B)'# are C'

4Q10 ,Q w,.w v(D ,a4 )',,

i wkkb A, B sad C ae 4M predicates (e.g., young men, blonde women, etc.);

Q1 and Q2 are fuzzy quantifiers (e.g., most, many, almost al, etc.) which are

interpreted as fuzzy numbers; and Q1 9 Q2 is the product of Q, and Q2 in fuzzy

arithmetic.

We develop several other basic syllogisms which may be employed as rules

of combination of evidence in expert systems. Among these is the consequent

conjunction ylUogim which may be expressed as the inference schema

QI A ' are B's

Q2 A'. are C',

QA' eare (B and C)',

in which Q is a fuzzy number bounded from above by Q,0Q2 sad from below

by Ov (Q 4 Q20), whereO ,OftedOare the extensions of thearithmetic

operators +, - and A , respectively, to fuzsy operands. Furthermore, we show

that syllogistic reasoning in fuzzy logic provides a basis for reasoning with dispo-

sitions, that is, with propositions which ae preponderantly, but not necessarily

always, true.

* Univenity of California, Berkdey, Dvsion of Computer Scieace, Berkeley, California 94720; Reartb sup.
ported by DARPA.N00311C-0236 and NSF Grant ECS4200670.
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1. Itroductlon

Fuzzy logic may be viewed as a generalization of multivalued logic in that it provides a

wider range of tools for dealing with uncertainty and imprecision in knowledge representation,

inference and decision analysis. In particular, fuzzy logic allows (a) the use of fuzzy quantifiers

exemplified by most, several, manu, few, many more, etc; (b) the use of fuzzy truth-values

exemplified by quite true, very true, mostly falke, etc; (c) the use of fuzzy probabilities exemplified

by likelu, unlikely, not very likely, etc; (d) the use of fuzzy possibilities exemplified by quite poei.
8'ble, lmst impossble, etc; and (e) the use of predicate modifiers exemplified by ver, more or let,

quite, ezremelu, etc.
po

What matters most about fuzzy logic is its ability to deal with fuzzy quantifiers as fuzzy

numbers which may be manipulated through the use of fuzzy arithmetic 1321. This ability

depends in an essential way on the existence - within fuzzy logic - of the concept of cadinality

r. e M. M@Neftu . t TPm V -& M Fe dmici alvew

of Kdheemeof Oat lpubabity theory b a branch of measure theory, then, more generally, the

tteary of funy probabilities may be subsumed within fuzzy logic. This aspect of fuzzy logic

makes it particularly well-suited for the management of uncertainty in expert systems 1331. More

specifically, by employing a single framework for the analysis of both probabilistic and possibilis-

tic uncertainties, fuzzy logic provides a systematic basis for inference from premises which are

imprecise, incomplete or not totally reliable. In this way, it becomes possible - as is shown in

this paper - to derive a set of rules for combining evidence through conjunction, disjunction and

4- cbining. In effect, such rules may be viewed as instances of syllogistic reasoning in fuzzy logic;

however, unlike the rules employed in most of the existing expert systems, they are not ad hoe in
'..

nature.

Our concern in this paper is with fuzzy syllogisms of the general form

I(_

r(Q)

in which the major premise, p(QJ , is a fuzzy proposition containing a fuzzy quantifier QI; the

minor premise, ( Q2), is a fuzzy proposition containing a fuzzy quantifier Q2; and the conclusion,

r( a), is a fuzzy proposition containing a fuzzy quantifier Q. For example, the

intertection/produet eul ritm 1321 may be expressed as

Q 1A's are D's (1.2)

Q2(A and B)'s are C's

Q A'. are (B and C)' #

.*,*'** . * . .
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where A, B and C are labels of fuzzy sets, and the fuzzy quantifier Q is given by the product of

the fuzzy quantifiers Q, and Q2, i.e.,

Q - Q Q Q2 , (1.3)

where ® denotes the product in fuzzy arithmetic 171.1 It should be noted that (3) may be viewed

as an analog of the basic probabilistic identity 1151

p(B, CIA) -p(B/A)p(C/AB) . (1.4)

A concrete example of the intersection/product syllogism is the following

most student# are young (1.6)

most uouno student# are uincle

mot 2 students are young and single

where most2 denotes the product of the fuzzy quantifier meet with itself.

An important application of syllogistic reasoning in fuzzy logic relates to what may be

regarded as reasoning with diapoition. A disposition, as its name suggests, is a proposition

which is preponderantly, but not necessarily always, true. To capture this intuitive meaning of a

disposition, we define a disposition as a proposition with implicit extremal fuzzy quantifiers, e.g.,

mot, almost O, almost always, usually, rarely, few, emsU frection, etc. This definition, should be

regarded as a diapooitional definition in the sense that it may not be true in all cases.

Examples of commonplace statements of fact which may be viewed as dispositions are:

overeating causes obeesity, #now is white, glue it oticky, icy ros are slippery, etc. An example of

what appears to be a plausible conclusion drawn from dispositional premises is the following

icy roads are slippery (1.6)

olivgery road. are dannerout

icy roads are dangerous .

As will be seen in Section 3, syllogistic reasoning with dispositions provides a basis for a formali-

zation of the type of commonsense reasoning exemplified by (1.6).

The importance of the concept of a disposition stems from the fact that what is commonly

regarded as ceommoneente knowledge may be viewed as a collection of dispositions 134. It is

widely recognized that commonsense knowledge plays an essential role in human reasoning and

decision-making. Viewed in this perspective, one of the objectives of the present paper is to sug-

gest that syllogistic reasoning in fuzzy logic may contribute to a better understanding or

I More generally, a circle around a& arithmetic operator repretsnts its extension to funy operads.
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commonsense reasoning and its role in decision analysis.

3. Fussy QuantIfiersa Composltionallty and Robustnes

As was stated in the Introduction, the concept of a fuzzy quantifier is related in an essential

way to the concept of cardinality - or, more generally, the concept of measure - of fuzzy sets.

More specifically, a fuzzy quantifier may be viewed as a fuzzy characterization of the absolute or

relative cardinality of a collection of fuzzy sets. In this sense, then, a fuzzy quantifier is a
8
ftecond-order fuzzy predicate.

The cardinality of a fuzzy set may be defined in a variety of ways 1311. For simplicity, we

shall employ the uigmecount for this purpose, which is defined as follows 161, 1301.

Let A be a finite fuzzy subset of the university of discourse, U, with A expressed as

A - pj/lu+ ... + P./u. , (2.1)

where p1/u1 ,i - 1, ... ,n, signifies that p, is the grade of membership of u, in A and +

denotes the union. Then, the sigma-count of A is defined as the real number

ECunt(A) - Ep, , (2.2)

with the understanding that the sum may be rounded, if need be, to the nearest integer. Further-

more, one may stipulate that the terms whose grade of membership falls below a specified thres-

hold be excluded from the summation. The purpose of such an exclusion is to avoid a situation

in which a large number of terms with low grades of membership become count-equivalent to a

small number of terms with high membership.

The relative igme-ceount, denoted by ECount(B/A), may be interpreted as the proportion

of elements of B in A. More explicitly,

E~ov((BI) - ceunt(BflA)(23
ECunt(A) (2.3

where BElA, the intersection of B and A, is defined by

lP.flA(U) - PAOU A P~AWU, 6 CZ U .(2.4)

Thus, in terms of the membersip functions of B and A, the relative sigma-count of B in A is

given by

*ECeunt(B/A) m E~gps(u.) A PAU.) (2.5)
SE,PA (U,)

The concept of a relative sigma-count provides a basis for interpreting the meaning of pro-

positions of the form p Q Q A ' a ere B ' , e.g., meot youno men ere healthy. More specifically,

the fuzzy quantifier Q in the proposition Q A ' ere B' may be regarded as a fuzzy

~ ~ *. p - . . * *.* ** . ..



characterization of the relative sigma-count of B in A, which entails that the proposition in ques-

tion may be translated as

Q A # are B' - ECount(BIA) is Q (2.6)

The right-hand member of (2.6) implies that Q, viewed as a fuzzy number, defines the possibility

distribution of ECount(B/A). This may be expressed as the possibility assignment equation [301

nx-Q , (2.7)

in which the variable X is the sigma-count in question and n1x is its possibility distribution.

As was stated earlier, a fuzzy quantifier is a second-order fuzzy predicate. The interpreta-

*, tion expressed by (2.6) and (2.7) shows that the evaluation of a fuzzy quantifier may be reduced

to that of a first order predicate if Q is interpreted as a fuzzy subset of the real line. Thus, let us

wide gaia tie propesitio p QA are B ' e, in which A and B are fuzzy sets in their

respective universes of discourse, U and V; and Q, regarded as a second-order fuzzy predicate, is

assumed to be characterized by its membership function Isq(X,Y), with X and Y ranging over

the fuzzy subsets of U and V. Then, based on (2.6) and (2.7), we can define #Q(X,Y) through

the equality

#Q(XY) - pq(ECount(X/Y)) , (2.8)

in the right-hand member of which Q is a unary first-order fuzzy predicate whose denotation if a

fuzzy subset of the unit interval. Consequently, in the proposition Q A 'o are B'., Q may be

interpreted as (a) a second-order fuzzy predicate defined on Ue X V* , where Us and Vs are the

fuzzy power sets of U and V; or (b) a first-order fuzzy predicate defined on the unit interval 10,11.

It is useful to classify fuzzy quantifiers into quantifiers of the first kind, second kind, third

kind, etc., depending on the arity of the second-order fuzzy predicate which the quantifier

represents. Thus, Q is a fuzzy quantifier of the first kind if it provides a fuzzy characterization of

the cardinality of a fuzzy set; Q is of the second kind if it provides a fuzzy characterization of the

relative cardinality of two fuzzy sets; and Q is of the third kind if it serves the same role in rela-

tion to three fuzzy sets. For example, the fuzzy quantifier labeled several is of the first kind; moot

is of the second kind; and menu more in there are many more A'# in B's than A's in C'o is of the

third kind. It should be noted that, in terms of this clasification, the certainty factors employed

in such experts systems as MYCIN 1231 and PROSPECTOR 181 are fuzzy quantifiers of the third

kind.

The concept of a fuzzy quantifier gives rise to a number of other basic concepts relating to

syllogistic reasoning among which are the concepts of compositionality and robustnen.

Specifically, consider a fuzzy syllogism of the general form (1.1), i.e.,

4
4 .
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,(Qd (2.9)

We shAll say that the syllogism is etrongly compositional if (a) Q may be expressed as a function

of Q1 and Q1 independent of the denotations of the predicates which enter into p and 1, exclud-

iog the trivial case where Q is the unit interval; and (b) if Q, and Q2 are numerical quantifiers, so

'is Q. Furthermore, we shall say that the syllogism is weakly compo#itionel if only (a) is satisfied,

in which case if Q, and Q2 wie numerical quaitifiers, Q may be interval-valued. As will be seen

in the sequel, in order to achieve strict compositionality, it is necessary, in general, to make some

restrictive assumptions concerning the predicates in p and q. For example, the sylogism

QA'I are B'. (2.10)

Q 2 B'# art C19

(QI Q2)A'e are (Band C)'.

is strictly compositional if B C A.

Turning to the concept of robustness, supppose that we start with a nonfuzzy syllogism of

the form

P (all)

an example of which is

all A' are B'* (2.12)

allAB's are C's

The original syllogism is robust if small perturbations in the quantifiers in p and q result in a

small perturbation in the quantifier in r. For example, the syllogism represented by (2.12) is

robust if its validity is preserved when (a) the quantifier all in p and f is replaced by almost all;

and (b) the quantifier all in r is replaced by almost almost al. (In more concrete terms, this is

equivalent to replacing &H in p and # by the fuzzy number 10c, where i is a small fuzzy

number; and (b) replacing a/ in r by the fuzzy number 102(.) More generally, a syllogism is

Melectively robust if the above holds for perturbations in either the major or the minor premise,

but not necessarily in both. For example, it may be shown that the syllogism expressed by (2.12)
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is selectively robust with respect to perturbations in the major premise but not in the minor

premise. In fact, the syllogism in question is brittle with respect to perturbations in the minor

premise in the sense that the slightest perturbation in the quantifier al in t requires the replace-

meat of the quantifier all in r by the vacuous quantifier none to all.

3. Fussy Syllogisms and Reasoning with Dispositions

As was stated earlier, one of the basic syllogisms in fuzzy logic is the intersection/product

syllogism expressed by (1.2).

In what follows, we shall employ this syllogism as a starting point for the derivation of other

syllogisms which are of relevance to the important problem of combination of evidence in expert

systems.

A derivatie iqilgm aE11 V" i do muofols efn e gis

Q, A I. are B'. (3.1)

Q 2 B'o are C'*

_>(Q1Q Q2)A's are C's

in which >(Q 1 Q Q2) should be read as at leant Q 1s Q2. This syllogism is a special case of the

intersection/product syllogism which results when B C A, i.e.,

P,(U,) < PAU.) , ., E U , i - 1.... (3.2)

For, in this case A n B = B, and since B n C is contained in C, it follows that

(QA Q2)A 't are (B and C)', = -(Q 10 Q2 )A 't are C'# (3.3)

(It is of interest to note that if Q in the proposition Q A '# are B' s is interpreted as the degree

to which A is contained in B, then the multiplicative chaining syllogism shows that, under the

assumption B C A, the fuzzy relation of fuzzy-set-containment is product transitive 128/, -2J.)

If, in addition to assuming that B C A, we assume that Q, and Q2 are monotone increae-

in, 131, i.e.,

2! Q=- Q1 (3.4)

2!Q 2 s-Q 2

which is true of the fuzzy quantifier msl, then

2 (Q 3 Id Q2) Q I Q2  (3.5)

and the multiplicative chaining syllogism becomes

QA' are B's (3.6)

d , , , , " ',, " '/ , . . , . . -, , , . . . , " . . . .. • . .. . . ....



Q2 B'e are Ceo

(QIGD Q2)A's are C'*

As an illustration, we shall consider an example in which the containment relation B C A

holds approximately, as in the proposition

p gmost American cars are big .(3.7)

Then, if

I most big care are expensive .(3.8)

we may conclude, by employing (3.6), that

r A moet 2 American care are expensive

- with the understanding that meet2 is the product of the fuzzy number moot with itself 132].

I m esat 'bye 6o by vxunpes that F to assumptions are made regarding A, B and

C, then the ctalialg inference schema

QA 'o are B'. (3.9)

Q2BIare C'I

Q A 'sare C's

is not weakly compositional, which is equivalent to saying that, in general, Q is the vacuous

quantifier none to all. However, if we assume, as done above, that B C A, then it follows from

* . the intersection/product syllogism that (3.6) becomes weakly compositional, with

Q - (Q10 Q2) ,(3.10)

and, furthermore, that (3.6) becomes strongly compositional if Q, and Q2 awe monotone increas-

ins.

Another important observation relates to the robustness of the multiplicative chaining syllo-

gism. Specifically, if we assume that

Q2~ 10(2

where il and (2 awe small fuzzy numbers, then it can readily be verified that, approximately,

QO Q2 19 l 193G 2  (.1

which establishes that the multiplicative chaining syllogism is robust. However, in the absence of

* the assumption B C A, the inference schema (3.9) is robust only with respect to perturbations in

aQ1. To demonstrate this, assume that Q, alsmoet all and Q2 all1. Then, from the



intersection/product syllogism it follows that Q - > (almost all). On the other hand, if we

assume that Q, - all and Q2 - almost all, then Q - none to all. Thus, as was stated earlier,

the inference schema (3.9) is brittle with respect to perturbations in the minor premise.

The MPR chaining sylloglam

In the preceding discussion, we have shown that the assumption B C A leads to a weakly

compositional multiplicative chaining syllogism. Another type of assumption which also leads to

a weakly compositional chaining syllogism is that of major premise reversibility or MPR, for

short. This assumption may be expressed as the semantic equivalence

QA ' are B' I QB's are A's (3.12)

which, in most cases, will hold approximately rather than exactly. For example,

most American care are big - most big cars are American

S It can be shown 134] that under the assumption of reversibility the following chaining syllo-

gism holds in an approximate sense
4'

Q1 A's are B's (3.13)

S.Q 2 B's are C's

29fQ4 Q201))A 't are C' .

We shall refer to this syllogism as the MPR chaining syllogism. It follows at once from (3.13) that

the MPR chaining syllogism is weakly compositional and robust. A concrete instance of this syl-

logism is provided by the following example

most American cars are big (3.14)

moot big care are heaoy

(N2 most l) American cars are heavy

The consequent conjunction syllogism

The consequent conjunction syllogism is an example of a basic syllogism which is not a

derivative of the intersection/product syllogism. Its statement may be expressed as follows:

Q, A'o are B't (3.15)

Q2 A's are C's

Q A's are (B and C)'s

where

- ' . . . . . . . . . . . .
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O (Qj1  Q2O)< Q<5 Q1 0Q2  (3.16)

>From (3.16), it follows at once that the syllogism is weakly compositional and robust.

An illustration of (3.15) is provided by the example

moot students are young

moet students are inole

* Q students are single and young

where

2most&'l :5 Q :- moot (3.17)

This expression for Q follows from (3.16) by noting that

most s most - moot

mad

09(2most 91) - 2mot al

The importance of the consequent conjunction syllogism stems from the fact that it provides

a formal basis for combining rules in a expert system through a conjunctive combination of

hypotheses 1331. However, unlike such rules in MYCIN 1231 and PROSPECTOR 181, the conse-

quent conjunction syllogism is weakly rather than strongly compositional. Since the combining

rules in MYCIN and PROSPECTOR are ad hoe in mature whereas the consequent conjunction

syllogism is not, the validity of strong compositionality in MYCIN ad PROSPECTOR is in need

of justification.

The antecedent conjunction syllogliam

An issue which plays an important role in the management of uncertainty in expert systems

relates to the question of how to combine rules which have the same consequent but different

antecedents.

Expressed as an inference shema in fuzzy logic, the question may be stated as

Q, A 's are C's (3.18)

QB's are C'.

Q (A and B)'s are C's,

in which Q is the quantifier to be determined as a function of Q, and Q2.



It can readily be shown by examples that, in the absence of any assumptions about A, B,

C, Q, and Q2, what can be said about Q is that it is the vacuous quantifier none to al. Thus, to

be able to say more, it is necessary to make some restrictive assumptions which are satisfied, at

least approximately, in typical situations.

The commonly made assumption in the case of expert systems 181, 1231 is that the items of

evidence are conditionally independent given the hypothesis. Expressed in terms of the relative

sigma-counts of A, B and C, this assumption may be written as

ECount(A flB/C) - IZCount(AfC)ECeunt(B/C) .(3.19)

Using this equality, it is easy to show that

ECeunt(C/A flB) - KE Count (CIA )E Count (C/B) ,(3.20)

W& ambe - ia A' is 0M by

K = Count(A )ECount (B) (.1
1 Count (A flB)ECount(C)(3)

The presence of this factor has the effect of making the inference schema (3.18) non-

compositional. One way of getting around the problem is to employ - instead of the sigma-count

-a count defined by

pE Cont () -~oun()'3.22)
p!~Coun E (B Count (-'B) -

pE Count (B/A) - ECount(B/A) (.2
ECount(-'B/A) ,(.2

in which -B denotes the negation of B (or, equivalently, the complement of B, if B is inter-

preted as a fuzzy set which represents the denotation of the predicate B). These counts will be

referred to as puigma -count. (with p standing for ratio) and correspond to the odds which are

employed in PROSPECTOR 181. Thus, expressed in words, we have

pE Count (B) a Ratio of B's to non-B'. (3.24)

pE Count (B/A) Ratio of B' toenon-B'* among A 's (3.25)

In terms of ptigma-eeunte, it can readily be shown that the assumption expressed by (3.19)

entails the equality

pECount(C/A flB) - pE Count (C/A )pE Count (C/B)pE Count (- C) (3.26)

This equality, then, leads to what will be referred to as the antecedent conjunction ONjlop~m

ratio of C'. to non-C'. amongA'. is R, (3.27)

ratio of C'. to non-C'. among B'e i. R2
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r atio of C's t. non-C's among (A and B)'# i RIO R 24 Rs

where

1* Rs a ratio of C 18 go non- C' 8

It should be noted that this syllogism may be viewed as the fuzzy logic analog of the likelihood

ratio combining rule in PROSPECTOR 181.

In the foregoing discussion, we have focused our attention on some of the basic syllogisms in

luzzy logic which may be employed as rules of combination of evidence in expert systems.

Another important function which these and related syllogism@ may serve is that of providing a

basis for reasoning with dispositions, that is; with propositions in which there are implicit fuzzy

quantifiers.

The basic idea underlying this application of fuzzy syllogisms is the following. Suppose that

-" m - NI m blimv
..

i read.a one ehev

slippery read are danferouo

Can we infer from these dispositions what appears to be a plausible conclusion, namely:

icy road# are dangersuu t (3.28)

As a irst step, we have to restore the suppressed fuzzy quantifiers in the premises. For Sim-

plicity, assume that the desired restoration may be accomplished by prefixing the dispositions in

question with the fuzzy quantifier most, i.e.,

iey road. ore slippery -. moot icy road. are slippery

slippery road. are dangerous -* most slippery road* are dangerott.

Next, if we assume that the proposition most elippery road# are dangerous satisfies the major

premise reversibility condition, i.e.,

most ie road. are *Lupperg - most slippery roads are icy

then by applying the MPR chaining syllogism (3.13), we have

moot icy roads are slippery (3.29)

moot eligeru road# are daneerous

(2mo.*GI) ic road. are dangerous

Finally, on suppressing the fuzzy quantifiers in (3.29), we are led to the chain of dispositions

icy road* are slippery (3.30)

SV
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sliggery road. are dangerous

icy roade are dangerous

which answers in the affirmative the question posed in (3.29), with the understanding that the

implicit fuzzy quantifier in the conclusion of (3.29) is 2moutOl rather than mool.

Concluding remark

- This paper may be viewed as n initiation of a study of syllogistic reasoning in the context

of fuzzy logic. Such reasoning has a direct bearing on the rules of combination of evidence in

expert systems and, in addition, provides a basis for inference from commonsense knowledge by

viewing such knowledge as a collection of dispositions.

The mifts pm is tis m p1 I m The &M d qMic am.

* soning in fuzzy logic has many rarifications which rem n to be exploved.

J

J/
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